Symplectic reflection algebra is certain multiparametric deformation of smash product of a finite group of automorphisms of a symplectic vector space and the polynomial algebra of that vector space. It is related to the coordinate ring of a universal Poisson deformation of the quotient singularity of that action. Rational Cherednik algebras are a special case.
Pavel Etingof, Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. math. 147, 243–348 (2002) doi arXiv:math.AG/0011114
Pavel Etingof, Symplectic reflection algebras and affine Lie algebras, arXiv:1011.4584
I. G. Gordon, Symplectic reflection algebras, in: Trends in Representation Theory of Algebras and Related Topics (Andrzej Skowroński, editor)
K. Brown, I. Gordon, Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math. 559 (2003) 193–216
Ivan Losev, Procesi bundles and symplectic reflection algebras, In: M. Hitrik, D. Tamarkin, B. Tsygan, S. Zelditch (eds), Algebraic and Analytic Microlocal Analysis. AAMA 2013. Springer Proc. in Math. & Stat. 269; arXiv:1501.00643